
slide1:
Welcome to this lecture on medical imaging. In our earlier sessions, we 
introduced some general concepts in medical imaging and provided a brief 
overview of essential tools, including MATLAB programming. Today, we begin what 
I consider the foundation section of this course. This foundation will help you 
build the knowledge needed to understand the major medical imaging modalities 
we’ll explore throughout the semester.

slide2:
We are right on schedule in our journey through this material.
If you’ve had a chance to look over the reading materials for today’s lecture, 
that’s great — it will make it easier to connect the ideas we cover. If not, 
that’s fine too. I encourage you to follow along closely and take time afterward 
to review the main points. Consistently reinforcing concepts as you go will help 
you develop a stronger and more intuitive grasp, especially as the material 
becomes more mathematically detailed

slide3:
Today’s lecture is straightforward. We’re going to talk about the concept of a 
system—a core idea that underpins everything we’ll cover in this course. If 
you’ve downloaded the draft of my textbook, you’ll see that this topic forms the 
first chapter. Reading just the first ten pages will give you a solid grasp of 
the key ideas.
In each chapter, I aim for a balanced structure: we start with three main 
sections, followed by a concluding section with remarks and points for deeper 
thought. In this lecture, we’ll begin with general systems, then narrow our 
focus to linear systems—which, as the name suggests, behave in a 
straightforward, predictable way, much like linear functions in mathematics.
To qualify as a linear system, two properties must be satisfied: additivity and 
homogeneity. Together, these form what we call the superposition principle. 
We’ll break these ideas down, explore when one property implies the other, and 
consider whether they are truly independent requirements. Lastly, we’ll touch on 
nonlinear systems—which are simply systems that don’t meet these linearity 
conditions. This will give you a broad overview of the system concepts essential 
for medical imaging.

slide4:
Let’s build on that by comparing systems to something you’re already familiar 
with—functions. A function is a mathematical rule that maps each input from one 
set, called the domain, to an output in another set, called the range. Systems 
work in a similar way. They take an input, process it through interconnected 
elements, and produce an output.
These elements could represent anything: parts of a social system, components of 
a physiological system, or pieces of a mechanical system. The important point is 
that both functions and systems describe relationships between inputs and 
outputs. Our goal is to define these relationships clearly so that we can apply 
them to engineering and medical imaging problems.

slide5:
Here’s a simple illustration of what a function does. Imagine selecting a value 
from the domain—say, a number—and applying the function to find its 
corresponding value in the range. This basic idea of mapping inputs to outputs 
might seem simple, but it’s fundamental to everything we’re discussing.
In my slides, I use symbols to highlight key points: a red diamond marks 
something essential—concepts you should remember clearly. A green circle points 
out interesting but optional material, things that go beyond what you strictly 
need for engineering purposes. While we don’t aim to become mathematicians in 
this course, understanding these key ideas deeply will strengthen your grasp of 
medical imaging systems.

slide6:
Functions come in many forms—like sinusoidal functions, linear functions, and 
even more complex structures such as those defined recursively in fractal 
geometry. If you’re unfamiliar with fractals, they’re fascinating patterns that 



repeat at every scale, and I encourage you to explore them further if you’re 
curious. But for our purposes, it’s enough to be comfortable with regular 
functions and their properties.

slide7:
Another powerful tool in mathematics is the Taylor expansion. This allows us to 
approximate any smooth, well-behaved function using a sum of terms: starting 
with a constant (the function’s value at a point), then adding linear terms 
based on the first derivative, and quadratic terms based on the second 
derivative, and so on.
Each added term improves the approximation, as long as certain conditions are 
met to ensure the series converges. In engineering practice, though, we often 
stop at the simpler terms—constant or linear—because they offer a good balance 
of accuracy and simplicity. This idea of building approximations is central to 
how we model systems efficiently.

slide8:
In fact, for most practical purposes, we’re satisfied with linear functions. In 
one dimension, this means a straight line; in two dimensions, it’s a plane; and 
in higher dimensions, we extend the idea further. These simple, linear 
relationships are easy to work with and provide the foundation for much of 
engineering analysis—including in medical imaging.

slide9:
As engineers, we often think of the world in terms of systems. We use 
mathematical operators—like L or O—to describe how a system transforms an input 
into an output. If you feed an input signal, V, into a system, the output, W, 
represents how that signal is modified.
These inputs and outputs can take many forms: time-dependent signals, images, 
tensors, or even discrete data sets like color values in an image. The concept 
is general: a system processes an input and produces an output, just as a 
function maps domain to range.
In medical imaging, we apply this thinking to devices like CT scanners, where 
the entire system transforms physical signals into diagnostic images. And as we 
analyze these systems, we rely on mathematical relationships to describe their 
behavior in precise terms. This distinction between thinking as engineers about 
systems and as mathematicians about abstract functions is subtle but important 
as we move forward.

slide10:
As engineers, much of our work revolves around systems, and one of the first 
things we need to do is measurement. Without measurement, we can’t really 
understand or control anything. In fact, measurement is at the heart of both 
engineering and physics. For example, in quantum mechanics, measurement plays a 
critical role—until we measure, we don’t truly know a system’s state. It’s like 
the famous thought experiment with Schrödinger’s cat: is the cat alive or dead? 
Only measurement collapses the uncertainty into reality.
When we perform measurements, we typically have input variables and sometimes a 
reference. Consider weighing an object: we place a known weight on one side of a 
balance and the object on the other. If the balance is level, we know the 
object’s weight equals the standard. Similarly, in electrical measurements, we 
might compare an unknown resistance or voltage against a reference using an 
ohmmeter or a multimeter. These devices let us measure things like current, 
resistance, and capacitance with precision.
More broadly, think of an instructor as a system: when the calendar says it’s 
time for class, that’s the input. The output is the lecture. But if something 
changes—say, the instructor is unwell or called away—the output changes too. 
This is a reminder that systems can have modifiers that influence their 
behavior.

slide11:
An imaging system is a specialized type of measurement system. Consider an MRI 
scanner: its purpose is to measure and produce an image of a cross-section of 
the body’s anatomy. Ideally, this image is a faithful representation—a sharp, 



clear point corresponds exactly to a sharp point in the body.
But not all systems are created equal. A high-quality system will produce sharp, 
high-contrast images, while a less precise system might blur details, much like 
how a low-resolution camera produces softer, less defined pictures. This 
blurring is a key characteristic of the system and tells us a lot about its 
performance. In essence, imaging systems, sensing systems, and measurement 
systems all belong to the same family—they process inputs to produce meaningful 
outputs through measurement.

slide12:
Another type of system is the control system. Unlike simple measurement systems, 
control systems don’t just generate an output—they use that output as feedback 
to adjust the input or the system’s behavior.
For instance, think of a radar tracking an airplane. The radar detects the 
plane’s position and adjusts itself to keep the target within view. This 
feedback loop helps the system achieve its goal, even as conditions change. 
Control systems are essential in engineering whenever we want systems to adapt 
or correct themselves in real time.

slide13:
Today, robotic systems represent a hot area of control system development. From 
robots that provide assistance in hotels or nursing homes to those that help 
care for infants, these systems combine control with a degree of machine 
intelligence. Their adaptability and responsiveness open up incredible 
possibilities in both industry and healthcare.

slide14:
Let’s not forget neurological systems, like the human brain. The brain is a 
complex system of billions of neurons that process inputs from the environment 
and generate intelligent actions. Neurons decide whether to fire based on 
inputs, passing signals that enable everything from basic reflexes to complex 
reasoning. Together, these neural networks form the foundation of our 
physiological systems.

slide15:
The human system as a whole is incredibly intricate. It spans multiple levels—
from genes and cells up to organs and entire physiological systems like the 
circulatory or digestive systems. When disease strikes, understanding these 
interconnections is crucial. This is the realm of systems biology or systems 
medicine—a field dedicated to studying the body as a network of interacting 
parts, so we can better understand, diagnose, and treat disease.

slide16:
Looking ahead, we can expect increasing convergence between robotic systems and 
human systems. Technologies like brain-machine interfaces are already emerging, 
with the potential to enhance memory, reasoning, and other cognitive functions. 
This merging of neuroscience and artificial intelligence represents an exciting 
frontier. As I once heard in a talk: physics helps us understand the external 
world, while neuroscience helps us understand ourselves. Bringing these fields 
together may fundamentally reshape what it means to be human.

slide17:
Given the vast complexity of all these systems, we need to narrow our focus. 
That’s why in this course, we concentrate on linear systems—the simplest and 
most important class of systems, especially in medical imaging. Linear systems 
are manageable to study, yet powerful in their applications. Once we master 
them, we’ll be ready to tackle the greater complexity of nonlinear systems.
In a linear system, two key properties must hold: additivity and homogeneity. 
Together, these form the superposition principle. We’ll explore these in detail, 
starting with simple cases and building up to more rigorous requirements.

slide18:
Let’s look at additivity first. If you know how a system responds to input F1, 
producing output K1, and separately how it responds to input F2, producing K2, 



then additivity tells us the system’s response to F1 + F2 is simply K1 + K2. 
This property allows us to analyze complex inputs by breaking them into simpler 
parts—a key advantage in engineering.

slide19:
Now consider homogeneity, or the scaling property. If a system produces output 
K1 for input F1, then scaling the input—multiplying it by some factor—should 
scale the output by the same factor. For example, if we double the brightness of 
an image input, the output image should also be twice as bright.
These two properties—additivity and homogeneity—are at the heart of linear 
systems. Understanding them clearly is essential, because they allow us to 
predict how systems behave, simplify complex problems, and build reliable 
imaging technologies.

slide20:
Let’s test these ideas with a few examples. Suppose we have a system that maps 
positive numbers, x, to the square root of x. Is this system linear? Well, while 
the output is zero when the input is zero, that alone doesn’t make a system 
linear. Remember, true linearity requires both additivity and homogeneity. The 
square root function doesn’t satisfy either—if you take two inputs and sum their 
square roots, that doesn’t equal the square root of the sum, and scaling the 
input doesn’t scale the output proportionally.
On the other hand, consider a linear transformation in three-dimensional space, 
like multiplying a vector by a 3×3 matrix. This kind of operation satisfies both 
additivity and homogeneity, making it a linear system. Similarly, mathematical 
operations like integration and differentiation also qualify as linear 
operators. They obey the superposition principle, which combines both key 
properties of linearity in a compact form.

slide21:
Over the years, some have argued that the definition of a linear system might be 
redundant—perhaps additivity alone implies homogeneity, or vice versa. This is 
an intriguing idea, and it reminds us that crafting precise definitions, like 
those in mathematics or geometry, is both an art and a science. Just as Euclid 
defined geometry with five foundational postulates, and mathematicians later 
debated whether all were independent, we can ask similar questions about system 
properties.
In the next few slides, we’ll look at when additivity and homogeneity are truly 
independent and when they might be connected. This kind of deep thinking helps 
us build stronger foundations for engineering practice.

slide22:
For continuous functions, additivity and homogeneity can indeed be shown to be 
equivalent. For example, if a system satisfies additivity, you can use that 
property repeatedly to demonstrate homogeneity for integer scalars, rational 
scalars, and ultimately for all real scalars, thanks to continuity. Conversely, 
if a system satisfies homogeneity, you can reason your way back to additivity.
But this also points to a larger truth: when building formal systems—whether in 
mathematics or engineering—we must ensure they are logically consistent. This is 
no trivial task, and it’s part of what makes formal reasoning so challenging and 
rewarding.

slide23:
However, equivalence doesn’t always hold. Consider the complex conjugate 
operation. This system satisfies additivity: the conjugate of a sum equals the 
sum of the conjugates. But it fails homogeneity when the scalar is complex, 
because conjugating a scalar times a complex number doesn’t give the same result 
as scaling the conjugate by that scalar. This shows that additivity doesn’t 
always imply homogeneity—you really do need to check both.

slide24:
Similarly, it’s possible to have homogeneity without additivity. Imagine a 
function that applies one slope if the input is rational and another slope if 
it’s irrational. Scaling works consistently because multiplying by a rational 



scalar preserves the input’s type (rational or irrational), so homogeneity 
holds. But if you add two irrational inputs that sum to a rational number, the 
slopes change—and additivity breaks down.
These examples remind us why linear systems require both properties. We can’t 
shortcut the definition by assuming one implies the other in all cases.

slide25:
Together, additivity and homogeneity form what we call the superposition 
principle. This principle allows us to break down complex inputs and predict how 
the system will respond by summing simpler outputs.
Linear systems are easier to work with than nonlinear ones, and tools like 
Fourier analysis and convolution give us powerful ways to study them. 
Importantly, even nonlinear systems can often be approximated as a collection of 
piecewise linear systems—so mastering linear systems lays the groundwork for 
handling more complex situations.

slide26:
One subtle idea is relative linearity. A system’s behavior might depend on the 
chosen coordinate system or reference point. For example, a linear function with 
an intercept (like y = mx + b) is still linear in its relative changes. If you 
redefine the origin to subtract out b, it behaves like a linear function passing 
through zero.
Similarly, for systems, we often focus on relative changes in input and output 
rather than absolute values. This helps us apply linear system theory even when 
the system’s baseline isn’t perfectly aligned with the origin.

slide27:
Let’s consider classic electrical components. A resistor follows Ohm’s law: V = 
IR. This is a linear relationship—double the current, and the voltage doubles. 
Whether we write V = IR or I = V/R, the linearity remains clear. This is a 
simple, familiar example of a linear system.

slide28:
A capacitor introduces a bit more complexity. Its voltage depends on the 
integral of the current over time, plus an initial condition. If we focus on the 
relative change—the change from that initial state—the system behaves linearly. 
This shows how initial conditions affect our view of linearity, and why 
considering relative changes can be so useful.

slide29:
An inductor works similarly, but with current depending on the integral of 
voltage over time, or voltage depending on the derivative of current. Again, if 
we account for initial conditions, we can apply linear system theory to analyze 
these components effectively.

slide30:
In medical imaging and other engineering applications, we often focus not just 
on linear systems, but on shift-invariant linear systems. This means that if the 
input shifts—say, you move an object from one location to another—the output 
shifts in the same way.
For example, if I take your picture in this room, then take it again in my 
office, the image of you should look the same. The system’s response stays 
consistent despite the shift in location. This stability, or shift invariance, 
is a key property of many imaging systems.

slide31:
Think of ripples in a pond. If you drop a stone at one point, the ripples spread 
out. If you drop it at another point, the same pattern emerges—just shifted in 
space. This is an example of spatial invariance in a system.

slide32:
Similarly, a music player is temporally invariant. Whether you play your 
favorite song today or next week, it sounds the same. This consistency over time 
reflects shift invariance with respect to the time domain.



slide33:
Mathematically, shift invariance means that if the input shifts by some amount—
say a—the output shifts by the same amount. The system’s operation stays 
consistent, no matter where or when the input occurs.
Shift invariance, combined with linearity, gives us powerful tools for analyzing 
systems. Together, they allow us to model and predict system behavior with 
confidence, whether in medical imaging, signal processing, or other fields of 
engineering.

slide34:
Let’s finish this part of our discussion by touching briefly on nonlinear 
systems. This is a topic marked with a green button—so it’s something nice to 
know, not required at the core level of this course. Nonlinear science is a 
relatively new and complex area. Unlike linear systems, nonlinear equations are 
often difficult, or even impossible, to solve exactly. But thanks to modern 
computing, we can discretize these equations and compute solutions numerically—
even if we have to do so through brute force.
Beyond practical applications, nonlinear systems are fascinating because they 
produce surprising, often counterintuitive phenomena. And anything that defies 
our intuition naturally grabs our interest.

slide35:
One famous example of a nonlinear system is the logistic map, a simple but 
powerful mathematical model. It describes how a population—say, of rabbits—
evolves over time. The equation looks straightforward: next year’s population 
depends on this year’s population and a growth rate factor, r. But because of 
the nonlinear term involving the population itself, the system’s behavior 
changes dramatically depending on the value of r.
When the population is small, growth is nearly linear. But as the population 
approaches the environment’s limits, growth slows—resources become scarce, and 
the population stabilizes or even declines. This simple model reflects how 
nature regulates itself.

slide36:
What’s remarkable about the logistic map is how its behavior changes as the 
growth rate increases. At low rates, the population settles to a single stable 
value. As the rate rises, the population starts oscillating between two values, 
then four, then many—and eventually behaves unpredictably, in what’s called 
chaotic behavior.
This is chaos in a mathematical sense: a deterministic system, governed by 
precise rules, but with outputs that seem random because they’re so sensitive to 
initial conditions. This is why long-term predictions, like weather forecasts, 
become unreliable—small differences in starting conditions can lead to 
dramatically different outcomes. This idea ties back to quantum mechanics, where 
we see that at a fundamental level, nature behaves probabilistically.

slide37:
Another example of a nonlinear system is the biological neuron. A neuron 
accumulates inputs over time—small signals have no effect, but once inputs 
surpass a certain threshold, the neuron fires, sending an electrical impulse. 
This threshold mechanism helps the nervous system filter out noise and only 
respond to meaningful stimuli.
We can model this mathematically as an artificial neuron, where inputs are 
combined through a weighted sum (the linear part), and this sum is passed 
through a nonlinear function that decides whether or not to fire. This is the 
basic building block of artificial neural networks.

slide38:
When we connect these artificial neurons in layers, we create a neural network. 
With many layers, we have what’s called a deep neural network—the foundation of 
modern deep learning.
In these networks, the lower layers detect simple features, like edges or 
corners, while higher layers learn more abstract patterns, like faces or traffic 



signs. Deep neural networks now drive advances in fields from facial recognition 
to self-driving cars. This is a powerful example of combining linear and 
nonlinear elements to solve complex problems.

slide39:
As we wrap up, let me remind you that alongside the exams and homework, those of 
you who are particularly motivated are welcome to pursue a class project. I 
recommend looking into machine learning—it’s an exciting and fast-growing area. 
If you’re interested, you can read my perspective article on this topic, and we 
can discuss potential directions for your project.

slide40:
If a project doesn’t interest you, that’s perfectly fine—you can focus on the 
regular course structure of lectures, exams, and homework. Speaking of which, 
I’ll upload today’s homework assignment for you to download. Please submit your 
solutions by midnight next Tuesday. After the deadline, we’ll post the answers 
for your review.
Thank you for your attention today!


